If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35.356t-4.905t^2=0
a = -4.905; b = 35.356; c = 0;
Δ = b2-4ac
Δ = 35.3562-4·(-4.905)·0
Δ = 1250.046736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35.356)-\sqrt{1250.046736}}{2*-4.905}=\frac{-35.356-\sqrt{1250.046736}}{-9.81} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35.356)+\sqrt{1250.046736}}{2*-4.905}=\frac{-35.356+\sqrt{1250.046736}}{-9.81} $
| 4=3+u | | 6(4^x)=384 | | 3+n/9=6 | | -3y+4+y=-2y+4 | | 4/5-4y=3 | | -4(8-c)=-(3c+7) | | x-5+5x=-5 | | -16/h=4 | | 29=8x+9 | | x/5-6=44 | | 4(x-1)=8(x+1)+12 | | 100=3s+8s | | 3x+5/4x=7/6 | | 6(3a+1)=30+3(2a-4)) | | 48=2+n | | x+3/x+4=3/4 | | 3m-3/5=3m-1/2 | | 7=-3(x-4) | | {4x+1}{3}=11 | | 16=2y-2 | | 6(x+36)+7=48 | | -4x+3x=-10+4x | | 4x+5=3x+2+x | | 22+x=12+6x | | 2.5x=5(4x+12) | | 18=d/12 | | x3+2x=7 | | (2x-6)+(2x+6)=180 | | 1/2(12x-6)+4x=127 | | 7x=5x+C | | -5y-8=9y+20 | | 7s=5s-84 |